Part I: Advanced Data Manipulation with dplyr (30 minutes)
Grouping and summarizing data
# Loading the dplyr package
library(dplyr)
#>
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#>
#> filter, lag
#> The following objects are masked from 'package:base':
#>
#> intersect, setdiff, setequal, union
# Using the 'mtcars' dataset
data(mtcars)
# Example: Grouping by 'cyl' (number of cylinders) and calculating mean mpg (miles per gallon)
grouped_data <- mtcars %>%
group_by(cyl) %>%
summarize(mean_mpg = mean(mpg))
print(grouped_data)
#> # A tibble: 3 × 2
#> cyl mean_mpg
#> <dbl> <dbl>
#> 1 4 26.7
#> 2 6 19.7
#> 3 8 15.1
Exercise:
- Group the ‘mtcars’ dataset by ‘gear’ and calculate the average horsepower (‘hp’) for each gear group.
Joining and merging datasets
# Creating a sample dataset to join with 'mtcars'
car_names <- data.frame(model = rownames(mtcars), car_type = rep(c("Type A", "Type B", "Type C"), length.out = nrow(mtcars)))
# Converting row names of 'mtcars' to a column
mtcars$model <- rownames(mtcars)
# Example: Joining 'mtcars' and 'car_names'
joined_data <- left_join(mtcars, car_names, by = "model")
print(head(joined_data))
#> mpg cyl disp hp drat wt qsec vs am gear carb
#> 1 21.0 6 160 110 3.90 2.620 16.46 0 1 4 4
#> 2 21.0 6 160 110 3.90 2.875 17.02 0 1 4 4
#> 3 22.8 4 108 93 3.85 2.320 18.61 1 1 4 1
#> 4 21.4 6 258 110 3.08 3.215 19.44 1 0 3 1
#> 5 18.7 8 360 175 3.15 3.440 17.02 0 0 3 2
#> 6 18.1 6 225 105 2.76 3.460 20.22 1 0 3 1
#> model car_type
#> 1 Mazda RX4 Type A
#> 2 Mazda RX4 Wag Type B
#> 3 Datsun 710 Type C
#> 4 Hornet 4 Drive Type A
#> 5 Hornet Sportabout Type B
#> 6 Valiant Type C
Exercise:
- Create a new dataframe with a subset of columns from ‘iris’ and merge it with the original ‘iris’ dataset based on a common column.